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ABSTRACT: Efficient and reliable calculation of protein−ligand binding free
energy is a grand challenge in computational biology and is of critical
importance in drug design and many other molecular recognition problems.
The main challenge lies in the calculation of entropic contribution to protein−
ligand binding or interaction systems. In this report, we present a new
interaction entropy method which is theoretically rigorous, computationally
efficient, and numerically reliable for calculating entropic contribution to free
energy in protein−ligand binding and other interaction processes. Drastically
different from the widely employed but extremely expensive normal mode
method for calculating entropy change in protein−ligand binding, the new
method calculates the entropic component (interaction entropy or −TΔS) of
the binding free energy directly from molecular dynamics simulation without
any extra computational cost. Extensive study of over a dozen randomly
selected protein−ligand binding systems demonstrated that this interaction
entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode
approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in
protein−ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this
effect.

1. INTRODUCTION

Molecular recognition plays a central role in biological systems.
Many essential elements of life such as self-replication,
metabolism, and information processing are controlled largely
by specific interaction between biological molecules as those
observed in between receptor−ligand, antigen−antibody,
DNA−protein, sugar−lectin, RNA−ribosome, and so on.
Thus, understanding how two molecules recognize each other
is of fundamental importance in biology. One of the most
important molecular recognition processes with direct medical
importance and application is protein−ligand binding, which is
at the heart of drug discovery and drug interaction and is an
area of intensive experimental and computational studies in
biomedical sciences.
Protein−ligand binding is essential to almost all biological

processes. The underlying physical and chemical interactions
determine the specific biological recognition at the molecular
level. The essential element in drug discovery is to find a
molecular ligand that either inhibits or activates a specific target
protein through ligand binding. However, finding a ligand that
binds a targeted protein with high affinity is a major challenge
in early stage drug discovery. Modern technological advances in

analytical methods and the availability of experimental tools
such as X-ray crystallography and nuclear magnetic resonance
(NMR)1,2 have enabled researchers to obtain atomic resolution
structures of protein−ligand complexes. The high-resolution
structures of protein and protein−ligand complex provide a
chemical basis for understanding protein−ligand interactions at
atomic level,3−8 and they can be effectively used as the basis for
the design of small-molecule drugs for the treatment of
diseases.
However, given the structure of a protein−ligand complex

(such as from experiment or virtual molecular docking), it is
not an easy task to calculate its binding affinity reliably, an
extremely important but difficult undertaking in computational
biology. The strength of binding of a ligand to a protein
molecule is governed by the free energy change in the binding
process. Besides the accuracy of force field and sufficient
sampling of the phase space during molecular simulation,
reliable calculation of entropy change is critical to the accuracy
of the computed binding free energy. Currently, the most
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rigorous approaches for accurate calculation of protein−ligand
binding free energy are free energy perturbation (FEP)9−14 and
thermodynamic integration15,16 methods. However, free energy
calculations for protein−ligand binding using either FEP (free
energy perturbation) or TI (thermodynamic integration)
methods are extremely difficult; both can be prohibitively
expensive and very difficult to converge numerically as one has
to simulate many nonphysical intermediate states of the system.
The linear interaction energy (LIE) approach is another class of
methods in which the interaction energies are used with
adjustable parameters to estimate protein−ligand binding free
energies.17,18 This class of methods often do well for systems
with similar interaction characteristics. In contrast, the MM/
PBSA approach,19−25 which uses an implicit solvent model to
compute solvation energy coupled with MD simulation in
explicit water to obtain gas-phase component of the binding
free energy, is more general for practical applications in
computing binding free energies. However, a major problem in
MM/PBSA method is the calculation of entropy change in
protein−ligand binding. The current MM/PBSA approach
calculates entropy change for protein−ligand binding by using
the standard normal mode method, which is approximate in
nature, extremely expensive in computation, and often
unreliable for protein−ligand binding. As a result, many
applications using MM/PBSA approach simply neglect the
calculation of entropy change for protein−ligand binding and
thus render the computed free energy even more uncertain.
In this report, we present a novel and conceptually more

intuitive theoretical paradigm called “interaction entropy” or IE.
This new paradigm introduces a novel but more intuitive
conceptual understanding of the entropic effect in protein−
ligand binding and other general interaction systems as well as a
practical method for highly efficient calculation of its effect.
This interaction entropy is theoretically rigorous and can be
directly obtained from MD simulation of protein−ligand
system without any extra computational cost. Thus, the new
method is numerically superefficient compared to the normal
mode calculation of entropy for protein−ligand binding. For
free energy calculation of protein−ligand binding, we can
simply employ the standard MM/PBSA method to calculate
the solvation free energy component and then combine them
with the calculated interaction entropy to obtain the binding
free energy. Thus, the interaction entropy method is
straightforward to implement and highly efficient to apply for
practical computation of protein−ligand binding free energies.
To fully demonstrate the efficiency and reliability of the present
approach, we carried out computational studies for 15
randomly selected protein−ligand complexes with experimental
binding affinities using both the interaction entropy method as
well as the standard normal mode method for entropy
calculations.

2. RESULTS
2.1. Details of the Numerical Studies. To demonstrate

the computational superiority of the interaction entropy
method against the standard normal mode approach in free
energy calculation of protein−ligand binding, we randomly
picked 15 protein−ligand systems with known experimental
binding energies for comparison study. The native structures of
these 15 protein−ligand complexes (Protein Databank ID:
1e66, 2brb, 2iwx, 2vw5, 2wbg, 2x00, 2xdl, 2yge, 2zjw, 3ao4,
3k5v, 3kgp, 3owj, 4des, and 4dew) from PDB are taken as the
starting structures. These systems are randomly selected from a

benchmark set called “core set” in the PDBbind database
developed by Wang.26,27 In our study, two separate MD
simulations are carried out for each of these 15 systems: a 2 ns
MD run with constraint (to be specified below) imposed on
protein structures and a 6 ns run without any constraint on
protein structures.
The ligands are optimized at HF/6-31G** level and single-

point calculations at B3LYP/cc-PVTZ level are performed to
generate electrostatic potentials (ESP) to fit their atomic
charges using the restrained ESP (RESP) method.28,29 All
missing hydrogen atoms are added to their proper positions
using the Leap module in AMBER12 package,30 and the
AMBER12SB force field is employed in all MD simulations.
Each complex is solvated in a truncated periodic TIP3P water
box, and the minimum distances from the surfaces of the box to
the complex atoms are set to 12 Å. Counter ions are added to
neutralize systems, and the complex systems are energy
minimized by the steepest descent method followed by
conjugate gradient minimization until convergence is reached.
After that, the entire systems are heated from 0 to 300 K over
300 ps with 10 kcal mol−1 Å−2 harmonic constraints on all
solute atoms. Langevin dynamics31 is used to regulate the
temperature with a collision frequency of 1.0 ps−1. All bonds
involving hydrogen atoms are constrained by the SHAKE
algorithm,32 and a time step of 2 fs is used in the simulation.
Finally, two separate MD simulations are performed. In the 2

ns MD run, the proteins are constrained with 10 kcal mol−1 Å−2

harmonic constraints on all atoms, and configurational
sampling is taken every 10 fs from the last 1 ns trajectories.
In the 6 ns MD run, no configurational constraints are imposed
on proteins, and sampling is also taken every 10 fs from the last
1 ns trajectories. Thus, a total of 100 000 configurations or
snapshots are extracted from the MD trajectories for the
calculation of interaction entropies and MM/PBSA solvation
energies. The rationale to run MD simulation with constraint
on protein structure is as follows. In many protein MD
simulations, many physical quantities are difficult or even
impossible to converge often because of structural drift
resulting from inaccurate force field. Thus, long simulation
without constraint can often lead to incorrect protein structures
and thus nonconvergent results.
For comparison study using normal mode33 method to

calculate entropy change in the standard MM/PBSA approach,
only 10 configurations or snapshots, equally spaced in the last 1
ns trajectories, are used to compute averaged entropic
contribution to the free energy. This is due to huge
computational costs associated with normal mode calculation
of entropy for protein systems.

2.2. Results of Comparisons. We first examine if the
simulation time is reasonably converged for the systems we are
studying. Figure 1 shows the RMSD of complex structures of a
number of the 15 systems with respect to their native
structures. As shown in Figure 1, all structures are stable with
simulation time in 2 ns run, obviously due to the use of
constraint. In the 6 ns run, the structures are generally stable
within the time frame. The complete RMSD values for all the
15 systems are given in the Supporting Information. Thus, we
believe that the two MD simulations with constrained protein
structure for 2 ns and without constraint for 6 ns are reasonably
converged for purpose of calculating binding free energies.
Next, we need to establish that calculation of the interaction
entropy using eq 8 is numerically convergent with respect to
sampling configurations. Figure 2 shows the convergence of the
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calculated interaction entropy with respect to sampling time or
number of sampling configurations. It is shown that the values
of interaction entropy are very well converged with respect to
configuration sampling within the simulation time frame.
A major attractive feature of our method is the computational

efficiency in calculating interaction entropy in comparison to
the standard normal mode method for entropy calculation.
Figure 3 shows the computer CPU time needed to calculate
interaction entropy (−TΔS) for 15 protein−ligand systems by
normal mode method. Because of computational expenses, only
10 configurations or snapshots that are evenly spaced in the last
1 ns trajectories are used for normal mode calculation of
entropy in standard MM/PBSA free energy calculation. As
shown in the figure, normal mode calculation of entropy takes
hours or longer of CPU time just for a single configuration. In
application for practical systems, one typically has to employ
dozens or more configurations for entropy calculation in order

to be statistically meaningful. For example, if 100 snapshots are
used, which is very common in MM/PBSA calculation of
protein−ligand binding free energy, then the computer time
will increase by 2 orders of magnitude in normal mode
calculation of entropy. Although parallelization with many
CPUs can shorten the wall clock time, the overall consumption
of computer resources can still be extremely high. Furthermore,
the entropy calculated by normal mode method is only
approximate, and there is no simple way to measure the
accuracy of such calculated entropy.
In contrast, the evaluation of interaction entropy in the

present method takes just fractional minutes for sampling
100 000 configurations within the 1 ns time frame for a given
protein−ligand system, so the calculation of interaction entropy
does not require additional computer time beyond that used in
MD simulation of the protein−ligand system and in MM/
PBSA calculation of solvation energies.
Next, we compare the calculated components of the binding

free energies including the interaction entropy using both
normal mode and the present method. The calculated binding
free energies are also directly compared to those of the
experiment. Table 1 shows the results of free energy
calculations from the 2 ns MD runs with constraint on protein
backbones and various terms of the binding free energies
calculated for the 15 protein−ligand complexes. Because we use
the same MM/PBSA method to calculate the solvation
component of the free energy in both the standard MM/
BPSA method and the present interaction entropy method, the
only differences in these calculations are the entropic
component of the free energy. As we note, the entropic
contributions to the free energies obtained from both
calculation methods are quite comparable in magnitude, but
the general trend appears to be that the result from the
interaction entropy method is somewhat smaller than those
calculated by the normal mode method. Of course, 15 systems
may not be large enough to state that this is a general trend, but
we should keep in mind that the interaction entropy computed
using the new method is sampled over 100 000 configurations
whereas that from the normal mode calculation samples only
10 configurations and the latter may not be well-converged
because of insufficient sampling.
In the second study, we performed 6 ns MD runs for all 15

systems without constraints on proteins’ structures. The

Figure 1. RMSD of the protein backbone as a function of MD
simulation time for 4 of the 15 systems in the 6 ns MD run. The lower
yellow line is the result from the 2 ns MD run. The structure of the
initial time refers to the configuration after optimization of the crystal
structure.

Figure 2. Calculated interaction entropy (in kcal/mol) for the 4dew
system as a function of time used in configuration sampling. The left
figure is the result from the 2 ns MD run (with constraint on protein
structure) and the right one from the 6 ns MD run (without constraint
on protein structure). In both calculations, configuration was sampled
every 10 fs.

Figure 3. Computation costs for calculating the entropy changes for
15 protein−ligand systems using the normal mode method for a single
configuration (snapshot). The computational cost using the
interaction entropy method is fractional of minutes.
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computed results from this 6 ns MD run are also shown in
Table 2. We notice that calculated free energies for most of
these 15 systems are quite similar in value to those in the
constrained 2 ns MD run. Also, the differences in the results
between the IE method and the normal mode method are quite
similar to that observed in the 2 ns MD run. The free energy
deviations from the experimental values are also comparable to
those in the 2 ns MD run. The results from these two
independent and different MD runs are consistent with each
other and demonstrate the reliability of the IE method.

3. DISCUSSION

In this report, we presented a theoretically rigorous, computa-
tionally efficient and numerically reliable method for calculation
of interaction entropy for protein−ligand binding directly from
the MD trajectory of the protein−ligand complex. The IE

method has enormous advantages over the standard normal
mode method for calculating entropic contribution to free
energy change in protein−ligand binding or similar host−guest
problems. First, the IE method is theoretically rigorous,
whereas the normal method is approximate for entropy
calculation. Second, in computational cost the IE method is
highly efficient, whereas the normal method is extremely
expensive. For example in protein−ligand binding, the “gas-
phase” protein−ligand interaction energy is available at each
time step of MD simulation, and there is no additional
computer cost beyond the standard MD simulation of the
protein−ligand complex system. Third, the result from IE
method is numerically stable with respect to ample ensemble
sampling, whereas that from the normal method is numerically
less stable. In the normal mode approach, one computes the
absolute entropies of the systems approximately and then
calculates their differences. Because the absolute values of

Table 1. Binding Free Energies of 15 Protein−Ligand Systems Computed from Nmode and IE Methods as Well as the
Corresponding Experimental Values: 2 ns MD Run with Constraint on Protein Structurea

−TΔS ΔGbind

PDB code ⟨Epl
int⟩ ΔGsol Nmode IE Nmode IE ΔGexp

1e66 −51.66 31.63 22.18 3.79 2.15 −16.24 −13.66
2brb −61.35 38.20 13.62 7.08 −9.53 −16.07 −6.72
2iwx −71.92 52.92 19.28 6.37 0.28 −12.63 −9.23
2vw5 −101.12 68.86 29.16 10.72 −3.10 −21.54 −11.77
2wbg −118.61 96.09 19.13 10.60 −3.39 −11.92 −6.15
2x00 −71.90 44.99 25.47 11.18 −1.44 −15.73 −15.65
2xdl −52.65 39.95 17.05 6.95 4.35 −5.75 −4.29
2yge −85.30 61.74 27.57 12.81 4.01 −10.75 −7.00
2zjw −54.06 46.33 4.76 10.68 −2.97 2.95 −10.64
3ao4 −64.09 41.76 20.39 7.27 −1.94 −15.06 −2.86
3k5v −52.76 21.67 19.79 8.71 −11.30 −22.38 −8.71
3kgp −107.74 84.89 10.80 13.68 −12.05 −9.17 −3.55
3owj −25.58 9.27 10.50 5.65 −5.81 −10.66 −8.38
4des −33.45 18.62 11.99 3.27 −2.84 −11.56 −8.09
4dew −56.35 40.58 0.32 4.90 −15.45 −10.87 −9.67
MAE 7.11 5.88

aMAE is the mean absolute error of the computed free energy from the experimental value.

Table 2. Binding Free Energies of 15 Protein−Ligand Systems Computed from Nmode and IE Methods as Well as the
Corresponding Experimental Values: 6 ns MD Run without Constraint on Protein Structurea

−TΔS ΔGbind

PDB code ⟨Epl
int⟩ ΔGsol Nmode IE Nmode IE ΔGexp

1e66 −50.25 30.60 14.69 5.16 −4.96 −14.49 −13.66
2brb −63.57 36.90 17.77 9.66 −8.90 −17.01 −6.72
2iwx −81.25 57.03 22.38 16.32 −1.84 −7.90 −9.23
2vw5 −105.80 76.36 27.78 26.69 −1.66 −2.75 −11.77
2wbg −111.67 79.97 25.65 16.58 −6.05 −15.12 −6.15
2x00 −89.15 54.08 15.43 20.77 −19.64 −14.30 −15.65
2xdl −55.38 37.29 18.42 11.19 0.33 −6.90 −4.29
2yge −94.47 63.07 22.46 19.80 −8.94 −11.60 −7.00
2zjw −49.63 32.79 5.16 11.43 −11.68 −5.41 −10.64
3ao4 −53.54 32.77 18.32 8.06 −2.45 −12.71 −2.86
3k5v −57.75 29.82 15.11 18.53 −12.82 −9.40 −8.71
3kgp −117.16 89.7 15.45 24.98 −12.01 −2.48 −3.55
3owj −22.21 9.09 9.00 8.37 −4.12 −4.75 −8.38
4des −53.78 36.85 17.87 10.44 0.94 −6.49 −8.09
4dew −55.61 38.09 17.67 14.68 0.15 −2.84 −9.67
MAE 5.07 4.53

aMAE is the mean absolute error of the computed free energies from the experimenxtal values.
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entropies can be very large for biomolecules, their subtractions
to produce a small number could cause numerical errors due to
inherent errors in the computed absolute entropies. For
example, the entropy term (TS) for the protein−ligand system
4dew is about 5027 kcal/mol, and the corresponding apo
system is about 5002.5 kcal/mol. In contrast, the IE method
directly computes the entropy change term without the need to
calculate absolute entropies of the systems. Of course, it should
also be noted that the normal mode method is used for
calculation of absolute entropy and thus has more general
applicability, whereas the IE method is only applicable to
calculation of relative entropy or entropy change before and
after protein−ligand binding or similar host−guest problems.
The difference in computed free energies between IE method

and the normal method in this study is obviously due to a
difference in the calculation of entropic terms in each MD run.
There are two possible sources that could contribute to the
difference in the result of two methods. First, the normal mode
calculation of entropy involves errors, both from the inherently
approximate nature of the method as well as from insufficient
sampling of configurations (only 10 configurations are used in
the present study because of computational cost). In the IE
calculation, there is also a possible source of error, which is due
to the choice of heat bath used in the MD simulation that could
affect the ensemble average of IE. However, because the entire
MD ensemble is based on the heat bath used, it is difficult to
disintegrate it from other sources of errors in comparing the
results of IE and normal mode methods.
To understand the difference between the present computa-

tional results with experimental binding free energies, there are
quite many possible sources of error as listed below. (1)
Experimental condition may not be exactly the same as in
theoretical model, e.g., ionization states and complex environ-
ment of the system, among others. (2) Accuracy of the force
field used in theoretical calculations. These include the
accuracies of force fields for proteins, ligands, and solvent
molecules; in particular, the lack of polarization of the force
fields is a serious issue. (3) PBSA calculation of solvation
energy is based on implicit solvent model with some molecular
parameters. (4) The heat bath used in MD simulation is also
artificial and could also be a source of error in computational
results. (5) The present calculation is based on the assumption
that the configurations of the protein and the ligand remain the
same before and after binding. For many systems, this is not
actually the case, and extra free energy changes due to
conformational distortions of the protein and/or the ligand
need to be included, e.g., by separate calculations.
It is worthwhile to mention the difference in computed free

energies from the 2 ns MD run with constraint and the 6 ns
MD run without constraint on protein structure. As we can see
from Tables 1 and 2, the difference between the two results for
a given system may come from interaction energy, solvation, or
entropic term. This is an indication that the computed binding
free energies can be sensitive to sampled complex structures in
MD simulation. Because of uncertain error in the force field, it
is difficult to fully converge the result with respect to
configuration sampling because the system may never converge
to the correct configuration distribution. It often is the case that
the longer the MD simulation, the worse the result because
longer MD simulation can actually cause the system to drift
further away from the correct structure. Thus, we believe that
by constraining the system near its natural structure should give
more desirable as well as numerically more stable binding free

energy from MD simulation. Contribution to free energy from
structural distortion in protein−ligand binding could be
obtained by some correction procedure to account for the
energy cost from structural distortion.
Finally, it is important to mention that the present IE

method not only provides a computational method for highly
efficient calculation of binding free energies, it also brings about
new conceptual understanding about entropic effect in
protein−ligand binding and other general interactions. For
this we note that there are a number of critical features for IE in
the formulation of eq 6. First, the IE is always positive, meaning
that the system entropy is always decreased upon interaction of
the two partners. Although this result is generally expected, eq
6 rigorously proves this result. Second, the entropic loss of the
system is closely correlated with the fluctuation of the
interaction energy around its average value. That means that
the more fluctuation of the interaction energy, the greater the
entropic loss in the binding free energy. This may seem to be
counterintuitive to the general perception of entropy about
freedom of movement, but it is actually correct because we are
dealing with the fluctuation of the interaction energy, which is
related to the relative motion of the interacting partners, not
individual partners. This means that the tighter the two
partners interacting with each other, the less entropic the loss in
the binding free energy.

4. METHODS
4.1. MM/PBSA Approach. The free energy for protein−ligand

binding can be expressed as the sum of two components, the gas-phase
binding free energy and the solvation free energy19−25

Δ = Δ + ΔG G Ggas sol (1)

where

Δ = ⟨ ⟩ − ΔG E T Sgas pl
int

(2)

where ⟨Epl
int⟩ is the ensemble-averaged protein−ligand interaction

energy and the term (−TΔS) is the entropic contribution. In the MM/
PBSA approach, the averaged protein−ligand interaction energy ⟨Epl

int⟩
is defined as the difference of gas-phase energy between that of the
protein−ligand complex and those of the separate protein and ligand.
The solvation free energy is obtained using an implicit solvent model
by solving the Poisson−Boltzmann (PB) equation with an added
empirical surface term to account for the cavitation free energy, and
ΔGsol is the difference between that of the protein−ligand complex
and those of the separate protein and ligand systems. The protein−
ligand solvation free energy is thus

Δ = Δ + ΔG G Gsol pb np (3)

where ΔGpb is the electrostatic solvation free energy, which is obtained
by solving PB equation using the PBSA program in AMBER suite. In
the PB calculation, the interior and exterior dielectric constants are set
to 1 and 80, respectively. ΔGnp is the nonpolar solvation free energy
term, which is obtained by using an empirical solvent-accessible surface
area (SASA) formula

γ βΔ = +G SASAnp (4)

The values γ and β we used in the calculation are the standard values
of 0.00542 kcal/(mol·Å2) and 0.92 kcal/mol, respectively. The
contribution of entropy (−TΔS) to the binding free energy, which
arises from the changes of the translational, rotational, and vibrational
degrees of freedom, is calculated using classical statistical thermody-
namics and normal mode approximation using the AMBER NMODE
module. −TΔS is the difference of entropy between the protein−
ligand complex and those of the separate protein and ligand. In the
PBSA approach, the free energy calculation is performed at multiple

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.6b02682
J. Am. Chem. Soc. 2016, 138, 5722−5728

5726

http://dx.doi.org/10.1021/jacs.6b02682


configurations that are sampled by MD simulation of the protein−
ligand system in explicit water. The difficulty is in the computation of
the entropic term TΔS in eq 2. In the MM/PBSA approach, the
standard normal mode approximation is used to compute the entropic
change. However, this normal mode approach is hugely expensive
computationally for protein systems with thousands or even tens of
thousands of degrees of freedom. Furthermore, such expensive
calculations need to be performed at many configurations in order
to obtain meaningful ensemble average. In addition, evaluation of
entropy by normal mode method can contain uncertain errors
especially for large biomolecules. As a result, such entropy calculation
could be prohibitively expensive and thus is often neglected in practical
applications.
For comparison in the present study, 10 configurations or snapshots

from the last 1 ns of each MD trajectories with an interval of 100 ps
are selected to calculate the entropic terms using the normal mode
method, and each configuration is minimized using a maximum of
500 000 steps with the RMS gradient of 10−4 kcal mol−1 Å−2. Sampling
of more configurations is more desirable, but they can be extremely
costly as is seen in the Results section of this study.
4.2. Interaction Entropy Method. In our new interaction

entropy method, the gas-phase component of the binding free energy
is derived by the simple steps as follows

∫

∫
Δ = −

= −
⟨ ⟩

= ⟨ ⟩
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(5)

Here Ep, El, and Ew are internal energies of the protein, ligand, and
waters, respectively, Epl

int, Epw
int , and Elw

int are interaction energies of
protein−ligand, protein−water, and ligand−water, respectively, ⟨Eplint⟩
is the ensemble averaged protein−ligand interaction energy, and ΔEplint
= Epl

int − ⟨Epl
int⟩ is the fluctuation of protein−ligand interaction energy

around the average energy. Thus, we define the IE as

− Δ = ⟨ ⟩βΔT S KT ln e Epl
int

(6)

The relevant ensemble averages can be evaluated by averaging over
MD simulation,

∫ ∑⟨ ⟩ = =
=

E
T

E t t
N

E t
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( ) d
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ipl
int
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pl
int

1
pl
int

(7)

and

∑⟨ ⟩ =β βΔ

=

Δ

N
e

1
eE

i

N
E t

1

( )ipl
int

pl
int

(8)

In the above derivation, we use MD simulation of the protein−ligand
complex in explicit water to generate ensemble average for interaction
entropy as given in eq 6. The above derivation for interaction entropy
is theoretically rigorous as compared to the inherently approximate
nature of normal mode calculation of entropy.
It is not difficult to understand why eq 6 is computationally superior

to that using normal mode approach. The calculation of the interaction
entropy by eqs 6 or 8 simply involves the natural log of an ensemble
average of eβΔEpl

int, which can be readily extracted along with MD
simulation without extra computational cost. Here we note that the
interaction energy Epl

int includes both electrostatic and van der Waals
interactions between the protein and the ligand.
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